IDEAL THEORY AND PRUFER DOMAINS

FELIX GOTTI

INTEGER-VALUED POLYNOMIALS I

The goal of this final lecture is to give a brief introduction to rings of integer-valued
polynomials. Throughout this section, R is an integral domain with quotient field K.
The ring

Int(R) := {p(x) € Kl[z] | p(R) € R}
is called the ring of integer-valued polynomials of R. We will conclude this lecture
proving that the ring of integer-valued polynomial of a Dedekind domain with finite
residue fields is a Priifer domain. In particular, Int(Z) is a Priifer domain. Here we
will also describe the spectrum of Int(S, R).

Uniform Continuity and Stone-Weierstrass Theorem. Let R be a Noetherian
ring, and let I be an ideal of R. By Krull Intersection Theorem, (1, .y 1" = (0). Then
we can define wy: R — Ny by w;(r) =sup{n € Ny | r € I"} if r # 0 and w;(0) = oc.
Using w; one can define a metric on R by setting |r|; := e7*7(") and

(0.1) d(r,s) = |r — s|; = e7 2=
for all r,s € R, with the convention e~* = 0. With d defined as in (0.1), the ring R
becomes a metric space; indeed, the following properties can be easily verified:

e d(r,s) =0 if and only if r = s,

e d(r,s) =d(s,r), and

o d(r,t) <sup{d(r,s),d(s,t)} <d(r,s)+d(s,t)
for all r,s,t € R. The topology on R induced by the distance d is called the [-adic
topology, and R is a topological ring with respect to the I-adic topology.

Proposition 1. Let R be a Noetherian domain, and let I be an ideal of R. Then every
f € Int(R) is uniformly continuous on R with respect to the I-adic topology.

Proof. Take f € Int(R), and fix € > 0. Then take d € R such that df(z) € R[z]. By
virtue of Artin-Rees Lemma, there is a k € Ny such that I"** N dR = I"(I* N dR) for
every n € Ny. Now set § := e~ ("0%%) where ng € N satisfies that e ™ < e. Now take
r,s € R with |r—s|; < 4. It is not hard to verify that r — s divides d(f(r) — f(s)) in R,
that is, d(f(r) — f(s)) € (r—s)R. This implies that d(f(r) — f(s)) € (r—s)R C I"0F*,
and so
d(f(r) — f(s)) € I"™* N dR = I™(I* N dR) C dI™.
1



2 F. GOTTI

As a consequence, f(r) — f(s) € 1", and we see that |f(r) — f(s)|; < e ™ < e. Hence
we conclude that f is uniformly continuous on R in the [-adic topology. 0

Corollary 2. Every polynomial in Int(Z) is uniformly continuous as a function on Z,
with respect to the p-adic topology.

For every compact subset K of R, the ring of polynomials R|[x] is dense in the metric
space C(K,R) consisting of all continuous real-valued functions on K with respect to
the uniform convergence topology. This is known as the Stone-Weierstrass Theorem.
A parallel result for the p-adic completion of Q was proved in 1944 by Dieudonné [3,
Theorem 4]: Q,[z] is dense in C'(K, Q,) for every compact subset K of Q, with respect
to the p-adic topology. Our next theorem is a related version of the Stone-Weierstrass
Theorem for rings of integer-valued polynomials, due to Mahler [4, Theorem 1]. Since
Z,, is the closure of Z in Q,, and Z, is a complete metric space, by virtue of Proposition 1,
every polynomial in Int(Z) uniquely extends as a continuous function to a function in
C(Zy,Z,). Thus, we can assume that Int(Z) C C(Z,,Z,).

Theorem 3. For each p € P, the ring of integer-valued polynomials Int(7Z) is dense in
C(Zy, Z,) with respect to the uniform convergence topology.

Proof. Fix p € P and n € N, and then set U; := i 4+ p"Z, for every i € [0,p" — 1].
Note that for each U; is a clopen ball in Z, with respect to the p-adic topology and,
in addition, Z, is the disjoint union of all these balls. Now let x;: Z, — Z, be the
characteristic functions of U;, that is, x;(z) = 1 if z € U; and x;(x) = 0 otherwise.
Clearly, x; € C(Z,,Z,) for every i € [0,p" — 1]. We will argue now that each x;
is an integral combination of the binomial functions (”é), ey (pf_l) modulo p. Since
deg (i) =k < p™ for every k € [[0,p" —1], it is not hard to argue that for every a,b € 7Z,
<p" b —al,

02) (-G,

(see Exercise 2). Since Z, is the closure of Z in Q,, we obtain that (0.2) also holds
for every a,b € Z,. Then if a,b € U; for some i € [0,p" — 1], then the fact that
vp(b— a) > n ensures that

()~ (:)

which means that (i) is constant on U; modulo p. Therefore for every k € [0, p" — 1]
there is a function oy, € C(Z,,Z,) such that

(0.3) (2) — o+ pg; (2) .

We can write the identity (0.3) using matrix notation as B = pD + M X, where B, D,

and X are the column vectors ((g), cee (pnx_l))T, (8055 0pn—1)T, and (xo, - -+, Xpn—1)7,

S pn_1|b - a|p S p_17
P
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respectively, and M is the square matrix with entry (;) in the position (k,i). Observe
that M is upper triangular with 1’s in its main diagonal. Thus, M is invertible, and
X = M~'B — pM~'D. After unfolding this matrix identity, we find that for every
i € [0,p™ — 1] there is a function ¢; € C(Z,, Z,) such that

p"—1
x
i = PO+ Ci )
w=pot ()

where ¢, € Ny for every k € [0,p" — 1]. Since {(i) ke No} is a Z-basis for
Int(Z), every characteristic function can be approximated modulo p in C(Z,,Z,) by
an integer-valued polynomial.

Now suppose that ¢y € C(Z,,7Z,). Since Z, is compact, ¢o is uniformly continuous
and, therefore, we can take n € N large enough so that ¢y is constant modulo p on U;
for every i € [0,p" — 1]. Therefore ¢y equals modulo p an integral linear combination
of the characteristic functions xi, ..., xpn—1, and so we can take f, € Int(Z) such that
¢o = fo+ popy for some ¢y € C(Z,,7Z,). Now we can repeat the same argument for ¢,
to obtain f; € Int(Z) and ¢y € C(Z,,Z,) such that ¢g = fo + pfi + p*¢2. Continuing
in this fashion, for every n € Ny we find fy, ..., f, € Int(Z) and ¢,+1 € C(Z,,Z,) such
that ¢g = p" 1 + Do p'fi. Hence for every n € N, there exists g € Int(Z) such
that v,(¢o(z) — g(z)) > n+1 for every x € Z,. This allows us to conclude that Int(Z)
is dense in C(Z,, Z,). O

Corollary 4. Let Uy, ..., Uy be disjoint open subsets covering Z,, and let cy,. .., ci be
nonnegative integers. Then there exists f(x) € Int(Z) such that v,(f(z)) = ¢; for all
r € U; and i € [1,k].

Proof. Set n := 1+ max{c; : i € [1,k]}. Now consider the function ¢ = S_F  piy,,
where x; is the characteristic function of U;. It is clear that ¢ € C(Z,,Z,). Therefore,
Stone-Weierstrass Theorem guarantees the existence of f € Int(Z) such that [¢ — f], <
p~", and so v,(p% — f(x)) > n > ¢ for all x € U; and i € [1,k]. This implies that
vp(f(2)) = ¢; whenever x € U; and i € [1, k]. O

Hensel’s Lemma. In this subsection, we will discuss Hensel’s lemma, which will be
used to describe the spectrum of Int(Z) in the next subsection.

Lemma 5. Let R be a commutative ring with identity, and let f € R[x]. Then there
exists g(z,y) € Rlx,y] such that

flx+y) = fx) + )y + gz, y)y*.
Proof. After writing f(z) = Y1, c;a* for some ¢, ..., ¢, € R, we see that

n

fle+y) = alz+y)t=c+> (@ + k" "y) + gz, v)y°),
k=0 k=1
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where g;(x,y) € Rlx,y] for every i € [1,k]. Now we can set g(z,y) = > 7 _, gi(z,y) to
obtain the desired identity, namely,

n n

ety =3 et + (chkx’f-l)w (igxa:,y))y? — [@)+ @)y + ol )

k=0 k=1 k=1

O

We proceed to prove Hensel’s Lemma.

Theorem 6 (Hensel’'s Lemma). Let f be a monic polynomial in Zy,[z|, and suppose
that f(a) =0 (mod pZ,) but f'(a) # 0 (mod pZ,) for some a € Z,. Then there exists
a unique r € Z, such that f(r) =0 and r = a (mod pZ,).

Proof. Let us argue that there exists a sequence (a,)nen, With terms in Z, such that
for every n € N>q,

(0.4) an = a,_1 (mod p"'Z,) and f(a,) =0 (mod p"Z,).

We proceed by induction on n. For n = 1, both conditions in (0.4) clearly hold after
taking ayp = ay; = a. Suppose, therefore, that we have found ag, aq,...,a, satisfying
both conditions in (0.4) for some n € N. Since f’(a) # 0 (mod pZ,), the congruence
equation f'(a)r = —f(a,)/p™ (mod pZ,) has a solution ¢, in Z,. Now it follows from
Lemma 5 that

Flan+p"tn) = fan) + f'(an)p"ta + 20",
for some z € Z,, and so f(a,+p"t,) = f(an)+ f'(a,)p"t, (mod p"**7Z,). Since a, = a
(mod pZ,), it follows that f'(a,)p"t, = f'(a)p™t, (mod p"™Z,). Set a,11 = ap,+p t,.
Because f'(a)t, = —f(a,)/p" (mod pZ,), we see that a,i; is a root of f modulo
pn+lzp:

flans1) = flan +p"t) = f(an) + f'(a)p"t, =0 (mod p"T'7Z,).

Therefore a,11 = a,(mod p"Z,) and f(an+1) = 0(mod p"*t'Z,), as desired. At this
point, we have produced a sequence (a,,),en Whose terms satisfy the conditions in (0.4).
The first condition in (0.4) ensures that (a,),ey is a Cauchy sequence in Z,. As Z, is
complete, (a,)nen converges. Let r denote the limit of (a,)nen. Since for each n € N,
the congruence equality a,+r = a, (mod p"Z,) holds for every k € N, after taking
limits we obtain r = a,, (mod p"Z,) and, in particular, r = a (mod pZ,). Also, for
each n € N, after applying f to both sides of r = a, (mod p"Z,), we obtain that
f(r) = f(a,) =0 (mod p"Z,), that is, f(r) € (,enP"Zyp- Hence f(r) = 0.

Finally, let us prove that r is the unique element of Z, satisfying the desired prop-
erties. To do so, suppose that 1’ € Z, satisfies that f(r') = 0 and v’ = a (mod pZ,).
Proving that " = r amounts to verifying that " = r (mod p"Z,) for every n € N.
We proceed by induction. It is clear that ' = r (mod pZ,). Assume that ' = r
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(mod p"Z,) for some n € N, and write ' = r+p"z, for some z, € Z,. Using Lemma 5
and the fact that f(r’') = f(r) =0, we see that

0=f(r') = f(r+p"z.) = f(r) + f/(1)p" 20 = f'(r)p" 2, (mod p"*).
Hence f'(r)z, € pZ,. Because pZ, is prime, the fact that f'(r) = f'(a) 0 (mod pZ,)
ensures that z, € pZ, Thus, ' = r + p"z, = r (mod p"™'Z,). Hence ' = r
(mod p"Z,) for every n € N, which implies that " = r. O

Example 7. Consider the polynomial f(z) = 2% + 5 € Z[z], which does not have any
root in Z (indeed, f(z) does not have any root in R). We will use Hensel’s Lemma to
show that f(z) has a root in Zs. This amounts to observing that 1 is a simple root
of f(z) modulo 3, that is, f(1) =0 (mod 3Z3) while f’(1) =2 # 0 (mod 3Z3). As a

consequence, —o is a square in Zs.

Spectrum of Int(Z). We are in a position now to describe the spectrum and the
maximal spectrum of the ring Int(Z).

Theorem 8 (Spectrum of Int(Z)). The following statements hold.

(1) A nonzero prime ideal of Int(Z) lies over the ideal (0) in Z if and only if it has

the form
Py(a) := Int(Z) N q(2)Q[x],

for some irreducible polynomial q(x) € Q[z]. In addition, for any two distinct
monic irreducible polynomials q(z) and r(z) of Qlx], the ideals Py and Py
are different.

(2) A prime ideal of Int(Z) lies over the ideal (p) in Z for some p € P if and only
if it has the form

M, ={f €nt(Z): f(a) € pZ,}
for some o € Zy, in which case it is maximal. For any distinct pairs (p, ) and
(p', '), the ideals M, and M,y . are different.

(3) The ideal Py is contained in M, o if and only if g(a)) = 0. Also, the maximal
ideals of Int(Z) are precisely those of the form M, ,.

Proof. (1) It is clear that Py lies over (0) in Z. Moreover, after setting S = Z \ {0},
we see that the prime ideals of Int(Z) lying over (0) are precisely the prime ideals of
Int(Z) that do not intersect S and, therefore, are in one-to-one correspondence with
the prime ideals of S~'Int(Z) = Q[z]. Thus, the nonzero prime ideals of Int(Z) are
precisely the Py, which are the contractions of the nonzero prime ideals of Q[z]. The
last statement follows immediately as two principal prime ideals ¢(z)Q[z] and r(z)Q[x]
are equal if and only if r(z) = ¢(z).

(2) Fix p € P and a € Z,. Observe that the map ¢: Int(Z) — Z,/pZ, defined by
o(f) = f(a) +pZ, is a ring homomorphism whose kernel is M, . As Z, is the disjoint
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union of the balls ¢ + pZ, (for i € [0,p—1]), we see that o(X —j+1) = 14 pZ,, where
J € [1,k] is chosen so that a + pZ, = j + pZ,. Hence ¢ is surjective and, therefore,
Int(Z)/M, o = Z,/pZ, = F,. Thus, M,, is a maximal ideal. Also, it is clear that M,
lies over (p).

Now let us argue that the M, , are the only prime ideals of Int(Z) lying over (p).
Suppose, by way of contradiction, that P is a prime ideal of Int(Z) lying over (p) such
that P # M, , for any o € Z,. Then for each a € Z,, we can take f, € M,, \ P.
Now for each o € Z,, the continuity of f, guarantees the existence of an open U,
containing « such that v,(f.(z)) > 1 for all x € U,. The compactness of Z, ensures
the existence of oy, ..., oy € Z, such that Z, = Ule Uy, Nowset f = fa, -+ fa,- Then
v (f(2)) = 28 vy(fa,(x)) > 1 for all @ € Z,. As a result, we see that f/p € Int(Z),
which implies that f = p(f/p) € P. Now the fact that f,, ¢ P for any ¢ € [1,k]
contradicts that the ideal P is prime. Hence the only prime ideals of Int(Z) over (p)
in Z are the M, , with o € Z,,.

Suppose now that M, , = M, 3 for some p € P and «, 3 € Z,. Then v,(f(a)) > 1
if and only if v,(f(8)) > 1 for every f € Int(Z). Now if a # (3, then we could take
k € N large enough so that the clopen balls a + p*Z, and 8 + p*Z, are disjoint, and
by virtue of Corollary 4, we could find a polynomial f € Int(Z) with v,(f(«)) = 0 and

v(f(B)) = 1.

(3) It is clear that the ideal Py, is contained in M, , provided that ¢(«) = 0. To
argue the converse, assume that Py, C M,, for some p € P and a € Z,. Now
suppose, by way of contradiction, that g(a) # 0. After replacing ¢(z) by a suitable
integer multiple, we can assume that g(z) € Z[x] N Pyy). Set n := v,(¢(a)) € Nyo. As
q € C(Zy,Z,), there is a clopen subset U of Z, containing « such that v,(¢(z)) = n
for all z € U. Then Corollary 4 guarantees the existence of f € Int(Z) such that
v(f(z)) =0ifz € U and v,(f(x)) =nifx € Z,\U. Set g = f/p". Since gq € Int(Z),
it follows that gg € Pyy). However, the fact that v,(g(a)q(a)) = 0 implies that
9q & M, . Therefore Py, is not contained in M, ,, which is a contradiction.

Finally, let ¢(x) be an irreducible in Q[z], and let us argue that the prime ideal Py,
is not maximal. After replacing ¢(x) by an integer multiple we can actually assume
that g(z) € Z[z]. We split the rest of the proof into two parts. First, we argue that
the set

P:={peP:p|q(z) for some z € Z}

is infinite. It is clear that P = P when ¢(z) € xZ[z], as in this case ¢(z) = +=x.
Suppose, therefore, that g(z) = >_1", ¢;a’ for some ¢y, . .., ¢, € Z with ¢y # 0. Assume
now, towards a contradiction, that P is finite, and let m be the product of all the
primes in P (it is clear that P is nonempty). Since ¢(z) is not constant, we can take
J € N such that q(com?) # +cy. Now observe that g(com?) = ¢o(1 + mic) for some
c € 7. As q(com?) # +cp, we see that |1 +mic| # 1, and so we can take p € P dividing
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1+ mic. As p{m, it follows that p ¢ P, which contradicts that p | ¢(com?). Hence
|P| = 0.

Since ¢(x) is irreducible, d := ged(q(z), ¢'(z)) € Z. Take a(z),b(x) € Z[z] such that
a(x)q(z) + b(x)¢' (x) = d. Let p be a prime in P that does not divide d (which exists
because |P| = 0o), and let g(z) and ¢/(x) be the reductions of the polynomials ¢(x)
and ¢'(x) modulo p, respectively. By definition of P, there exists zy € Z such that
q(z0) = 0. After reducing a(z)q(z) + b(z)¢'(x) = d module p, we see that ¢'(zq) # 0,
whence 2 is a simple root of ¢(x) modulo p. Thus, by Hensel’s Lemma, there exists
a € zy + pZ, such that g(a) = 0. Therefore by the statement we have already proved,
Pyzy € M, o. This containment is proper because M, lies over (p). Hence the ideals
described in part (2) are the only maximal ideals of Int(Z). O

EXERCISES

Exercise 1. Let R be a Noetherian ring, and let I be a nonzero ideal of R. Prove that
the addition and multiplication of R are continuous with respect to the I-adic topology.
Deduce that R is a topological ring with respect to this topology.

Exercise 2. Forp € P and n € N, let f be a polynomial in Int(Z) with deg f < p".
Prove that |f(b) — f(a)|, < p"'|b—al, for all a,b € Z.

Exercise 3. Show that the polynomial x* + x — 6 does not have any simple root in Zs
modulo 575 even though it has a root in Zs. Deduce that we cannot always use Hensel’s
Lemma to argue the existence of roots of certain polynomials.

Exercise 4. Let p be an odd prime, and consider the polynomial q(z) = 2> —x +p €
Zx|, which is irreducible in Q[z]. Prove that the prime ideal Py, of Int(Z) is contained
in two different maximal ideals of Int(Z) lying over (p).
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